先进电子封装技术与关键材料丛书--微电子封装和集成的建模与仿真(英文版) 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线

先进电子封装技术与关键材料丛书--微电子封装和集成的建模与仿真(英文版)精美图片
》先进电子封装技术与关键材料丛书--微电子封装和集成的建模与仿真(英文版)电子书籍版权问题 请点击这里查看《

先进电子封装技术与关键材料丛书--微电子封装和集成的建模与仿真(英文版)书籍详细信息

  • ISBN:9787122392275
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2021-12
  • 页数:696
  • 价格:376.20
  • 纸张:胶版纸
  • 装帧:精装
  • 开本:16开
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看
  • 更新时间:2025-01-20 15:46:05

寄语:

一本书全面掌握集成电路及微系统封装的建模与仿真


内容简介:

随着电子封装的发展,电子封装已从传统的四个主要功能(电源系统、信号分布及传递、散热与机械保护)扩展为六个功能,即增加了DFX 及系统测试两个新的功能。其中DFX 是为“X”而设计,X 包括:可制造性、可靠性、可维护性、成本,甚至六西格玛。DFX 有望在产品设计阶段实现工艺窗口的确定、可靠性评估和测试结构及参数的设计等功能,真正做到“次就能成功”,从而将计算机辅助工程(CAE)变为计算机主导工程(CE),以大大加速产品的上市速度。本书是全面介绍DFX 在封装中应用的图书。作为封装工艺过程和快速可靠性评估及测试建模仿真的本专著,书中包含两位作者在工业界二十多年的丰富经验,以及在MEMS、IC和LED 封装部分成功的实例,希望能给国内同行起到抛砖引玉的作用。同时,读者将会从书中的先进工程设计和微电子产品的并行工程和协同设计方法中受益。

本书第2 版新增了两位作者在电子制造和封装领域新的成果与经验,例如电力电子模块的建模和仿真、电子封装耐热性的分析模型、3D TSV 封装等内容。

本书主要读者对象为学习DFX(制造工艺设计、测试设计、可靠性设计等)的研究人员、工程师和学生等。


书籍目录:

Foreword by Jianbin Luo xv

Foreword by C. P. xvii

Foreword by Zhigang Suo xix

Preface to Second Edition xxi

Preface to First Edition xxiii

Acknowledgments xxv

About the Authors xxvii

Part I Mechanics and Modeling 1

1 Constitutive Models and Finite Element Method 3

1.1 Constitutive Models for Typical Materials 3

1.1.1 Linear Elasticity 3

1.1.2 Elastic-Visco-Plasticity 5

1.2 Finite Element Method 9

1.2.1 Basic Finite Element Equations 9

1.2.2 Nonlinear Solution Methods 12

1.2.3 Advanced Modeling Techniques in Finite Element Analysis 14

1.2.4 Finite Element Applications in Semiconductor Packaging Modeling 17

1.3 Chapter Summary 18

References 19

2 Material and Structural Testing for Small Samples 21

2.1 Material Testing for Solder Joints 21

2.1.1 Specimens 21

2.1.2 A Thermo-Mechanical Fatigue Tester 23

2.1.3 Tensile Test 24

2.1.4 Creep Test 26

2.1.5 Fatigue Test 31

2.2 Scale Effect of Packaging Materials 32

2.2.1 Specimens 33

2.2.2 Experimental Results and Discussions 34

2.2.3 Thin Film Scale Dependence for Polymer Thin Films 39

2.3 Two-Ball Joint Specimen Fatigue Testing 41

2.4 Chapter Summary 41

References 43 

3 Constitutive and User-Supplied Subroutines for Solders Considering Damage Evolution 45

3.1 Constitutive Model for Tin-Lead Solder Joint 45

3.1.1 Model Formulation 45

3.1.2 Determination of Material Constants 47

3.1.3 Model Prediction 49

3.2 Visco-Elastic-Plastic Properties and Constitutive Modeling of Underfills 50

3.2.1 Constitutive Modeling of Underfills 50

3.2.2 Identification of Material Constants 55

3.2.3 Model Verification and Prediction 55

3.3 A Damage Coupling Framework of Unified Viscoplasticity for the Fatigue of Solder Alloys 56

3.3.1 Damage Coupling Thermodynamic Framework 56

3.3.2 Large Deformation Formulation 62

3.3.3 Identification of the Material Parameters 63

3.3.4 Creep Damage 66

3.4 User-Supplied Subroutines for Solders Considering Damage Evolution 67

3.4.1 Return-Mapping Algorithm and FEA Implementation 67

3.4.2 Advanced Features of the Implementation 69

3.4.3 Applications of the Methodology 71

3.5 Chapter Summary 76

References 76

4 Accelerated Fatigue Life Assessment Approaches for Solders in Packages 79

4.1 Life Prediction Methodology 79

4.1.1 Strain-Based Approach 80

4.1.2 Energy-Based Approach 82

4.1.3 Fracture Mechanics-Based Approach 82

4.2 Accelerated Testing Methodology 82

4.2.1 Failure Modes via Accelerated Testing Bounds 83

4.2.2 Isothermal Fatigue via Thermal Fatigue 83

4.3 Constitutive Modeling Methodology 83

4.3.1 Separated Modeling via Unified Modeling 83

4.3.2 Viscoplasticity with Damage Evolution 84

4.4 Solder Joint Reliability via FEA 84

4.4.1 Life Prediction of Ford Joint Specimen 84

4.4.2 Accelerated Testing: Insights from Life Prediction 87

4.4.3 Fatigue Life Prediction of a PQFP Package 91

4.5 Life Prediction of Flip-Chip Packages 93

4.5.1 Fatigue Life Prediction with and without Underfill 93

4.5.2 Life Prediction of Flip-Chips without Underfill via Unified and Separated Constitutive Modeling 95

4.5.3 Life Prediction of Flip-Chips under Accelerated Testing 96

4.6 Chapter Summary 99

References 99

5 Multi-Physics and Multi-Scale Modeling 103

5.1 Multi-Physics Modeling 103

5.1.1 Direct-Coupled Analysis 103

5.1.2 Sequential Coupling 104

5.2 Multi-Scale Modeling 106

5.3 Chapter Summary 107

References 108

6 Modeling Validation Tools 109

6.1 Structural Mechanics Analysis 109

6.2 Requirements of Experimental Methods for Structural Mechanics Analysis 111

6.3 Whole Field Optical Techniques 112

6.4 Thermal Strains Measurements Using Moire Interferometry 113

6.4.1 Thermal Strains in a Plastic Ball Grid Array (PBGA) Interconnection 113

6.4.2 Real-Time Thermal Deformation Measurements Using Moire Interferometry 116

6.5 In-Situ Measurements on. Micro-Machined Sensors 116

6.5.1 Micro-Machined Membrane Structure in a Chemical Sensor 116

6.5.2 In-Situ Measurement Using Twyman-Green Interferometry 118

6.5.3 Membrane Deformations due to Power Cycles 118

6.6 Real-Time Measurements Using Speckle Interferometry 119

6.7 Image Processing and Computer Aided Optical Techniques 120

6.7.1 Image ftocessing for Fringe Analysis 120

6.7.2 Phase Shifting Technique for Increasing Displacement Resolution 120

6.8 Real-Time Thermal-Mechanical Loading Tools 123

6.8.1 Micro-Mechanical Testing 123

6.8.2 Environmental Chamber 124

6.9 Warpage Measurement Using PM-SM System 124

6.9.1 Shadow Moire and Project Moire Setup 125

6.9.2 Warpage Measurement of a BGA, TXvo Crowded PCBs 127

6.10 Chapter Summary 131

References 131

7 Application of Fracture Mechanics 135

7.1 Fundamental of Fracture Mechanics 135

7.1.1 Energy Release Rate 136

7.1.2 J Integral 138

7.1.3 Interfacial Crack 139

7.2 Bulk Material Cracks in Electronic Packages 141

7.2.1 Background 141

7.2.2 Crack Propagation in Ceramic/Adhesive/Glass System 142

7.2.3 Results 146

7.3 Interfacial Fracture Toughness 148

7.3.1 Background 148

7.3.2 Interfacial Fracture Toughness of Flip-Chip Package 0between Passivated Silicon Chip and Underfill 150

7.4 Three-Dimensional Energy Release Rate Calculation 159

7.4.1 Fracture Analysis 160

7.4.2 Results and Comparison 160

7.5 Chapter Summary 165

References 165

8 Concurrent Engineering for Microelectronics 169

8.1 Design Optimization 169

8.2 New Developments and Trends in Integrated Design Tools 179

8.3 Chapter Summary 183

References 183

Part II Modeling in Microelectronic Packaging and Assembly 185

9 Typical IC Packaging and Assembly Processes 187

9.1 Wafer Process and Thinning 188

9.1.1 Wafer Process Stress Models 188

9.1.2 Thin Film Deposition 189

9.1.3 Backside Grind for Thinning 191

9.2 Die Pick Up 193

9.3 Die Attach 198

9.3.1 Material Constitutive Relations 200

9.3.2 Modeling and Numerical Strategies 201

9.3.3 FEA Simulation Result of Flip-Chip Attach 204

9.4 Wire Bonding 206

9.4.1 Assumption, Material Properties and Method of Analysis 207

9.4.2 Wire Bonding Process with Different Parameters 208

9.4.3 Impact of Ultrasonic Amplitude 210

9.4.4 Impact of Ultrasonic Frequency 212

9.4.5 Impact of Friction Coefficients between Bond Pad and FAB 214

9.4.6 Impact of Different Bond Pad Thickness 217

9.4.7 Impact of Different Bond Pad Structures 217

9.4.8 Modeling Results and Discussion for Cooling Substrate Temperature after Wire Bonding 221

9.5 Molding 223

9.5.1 Molding Flow Simulation 223

9.5.2 Curing Stress Model 230

9.5.3 Molding Ejection and Clamping Simulation 236

9.6 Leadframe Forming/Singulation 241

9.6.1 Euler Forward versus Backward Solution Method 242

9.6.2 Punch Process Setup 242

9.6.3 Punch Simulation by ANSYS Implicit 244

9.6.4 Punch Simulation by LS-DYNA 246

9.6.5 Experimental Data 248

9.7 Chapter Summary 252

References 252

10 Opto Packaging and Assembly 255

10.1 Silicon Substrate Based Opto Package Assembly 255

10.1.1 State of the Technology 255

10.1.2 Monte Carlo Simulation of Bonding/Soldering Process 256

10.1.3 Effect of Matching Fluid 256

10.1.4 Effect of the Encapsulation 258

10.2 Welding of a Pump Laser Module 258

10.2.1 Module Description 258

10.2.2 Module Packaging Process Flow 258

10.2.3 Radiation Heat Transfer Modeling for Hermetic Sealing Process 259

10.2.4 Two-Dimensional FEA Modeling for Hermetic Sealing 260

10.2.5 Cavity Radiation Analyses Results and Discussions 262

10.3 Chapter Summary 264

References 264

11 MEMS and MEMS Package Assembly 267

11.1 A Pressure Sensor Packaging (Deformation and Stress) 267

11.1.1 Piezoresistance in Silicon 268

11.1.2 Finite Element Modeling and Geometry 270 

11.1.3 Material Properties 270

11.1.4 Results and Discussion 271

11.2 Mounting of Pressure Sensor 273

11.2.1 Mounting Process 273

11.2.2 ModeUng 274

11.2.3 Results 276

11.2.4 Experiments and Discussions 277

11.3 Thermo-Fluid Based Accelerometer Packaging 279

11.3.1 Device Structure and Operation Principle 279

11.3.2 Linearity Analysis 280

11.3.3 Design Consideration 284

11.3.4 Fabrication 285

11.3.5 Experiment 285

11.4 Plastic Packaging for a Capacitance Based Accelerometer 288

11.4.1 Micro-Machined Accelerometer 289

11.4.2 Wafer-Level Packaging 290

11.4.3 Packaging of Capped Accelerometer 296

11.5 Tire Pressure Monitoring System (TPMS) Antenna 303

11.5.1 Test of TPMS System with Wheel Antenna 304

11.5.2 3D Electromagnetic Modeling of Wheel Antenna 306

11.5.3 Stress Modeling of Installed TPMS 307

11.6 Thermo-Fluid Based Gyroscope Packaging 310

11.6.1 Operating Principle and Design 312

11.6.2 Analysis of Angular Acceleration Coupling 313

11.6.3 Numerical Simulation and Analysis 314

11.7 Microjets for Radar and LED Cooling 316

11.7.1 Microjet Array Cooling System 319

11.7.2 Preliminary Experiments 320

11.7.3 Simulation and Model Verification 322

11.7.4 Comparison and Optimization of Three Micrqjet Devices 324

11.8 Air Flow Sensor 327

11.8.1 Operation Principle 329

11.8.2 Simulation of Flow Conditions 331

11.8.3 Simulation of Temperature Field on the Sensor Chip Surface 333

11.9 Direct Numerical Simulation of Particle Separation by Direct Current Dielectrophoresis 335

11.9.1 Mathematical Model and Implementation 335

11.9.2 Results and Discussion 339

11.10 Modeling of Micro-Machine for Use in Gastrointestinal Endoscopy 342

11.10.1 Methods 343

11.10.2 Results and Discussion 348

11.11 Chapter Summary 353

References 354

12 System in Package (SIP) Assembly 361

12.1 Assembly Process of Side by Side Placed SIP 361

12.1.1 Multiple Die Attach Process 361

12.1.2 Cooling Stress and Warpage Simulation after Molding 365

12.1.3 Stress Simulation in Trim Process 366

12.2 Impact of the Nonlinear Materials Behaviors on the Flip-Chip Packaging Assembly Reliability 370

12.2.1 Finite Element Modeling and Effect of Material Models 371

12.2.2 Experiment 374

12.2.3 Results and Discussions 375

12.3 Stacked Die Flip-Chip Assembly Layout and the Matenal Selection 381

12.3.1 Finite Element Model for the Stack Die FSBGA 383

12.3.2 Assembly Layout Investigation 385

12.3.3 Material Selection 389

12.4 Chapter Summary References Part m Modeling in Microelectronic Package and Integration: Reliability and Test 393

References 393

 

Part III Modeling in Microelectronic Package and Integration: Reliability and Test 395

13 Wafer Probing Test 397

13.1 Probe Test Model 397

13.2 Parameter Probe Test Modeling Results and Discussions 400

13.2.1 Impact of Probe Tip Geometry Shapes 401

13.2.2 Impact of Contact Friction 403

13.2.3 Impact of Probe Tip Scrub 403

13.3 Comparison Modeling: Probe Test versus Wire Bonding 406

13.4 Design of Experiment (DOE) Study and Correlation of Probing Experiment and FEA Modeling 409

13.5 Chapter Summary 411

References 412

14 Power and Thermal Cycling, Solder Joint Fatigue Life 413

14.1 Die Attach Process and Material Relations 413

14.2 Power Cycling Modeling and Discussion 413

14.3 Thermal Cycling Modeling and Discussion 420

14.4 Methodology of Solder Joint Fatigue Life Prediction 426

14.5 Fatigue Life Prediction of a Stack Die Flip-Chip on Silicon (FSBGA) 427

14.6 Effect of Cleaned and Non-Cleaned Situations on the Reliability of Flip-Chip Packages 434

14.6.1 Finite Element Models for the Clean and Non-Clean Cases 435

14.6.2 Model Evaluation 435

14.6.3 Reliability Study for the Solder Joints 437

14.7 Chapter Summary 438

References 439

15 Passivation Crack Avoidance 441

15.1 Ratcheting-Induced Stable Cracking: A Synopsis 441

15.2 Ratcheting in Metal Films 445

15.3 Cracking in Passivation Films 447

15.4 Design Modifications 449

15.5 Chapter Summary 452

References 452

16 Drop Test 453

16.1 Controlled Pulse Drop Test 453

16.1.1 Simulation Methods 454

16.1.2 Simulation Results 457

16.1.3 Parametric Study 458

16.2 Free Drop 460

16.2.1 Simulated Drop Test Procedure 460

16.2.2 Modeling Results and Discussion 461

16.3 Portable Electronic Devices Drop Test and Simulation 467

16.3.1 Test Set-Up 467

16.3.2 Modeling and Simulation 468

16.3.3 Results 470

16.4 Embedded Ultrathin Sensor Chip Drop Test and Simulation 471

16.4.1 Stress Sensor and Embedded Package 471

16.4.2 Drop Impact FEM Modeling and Validation 473

16.4.3 Parametric Study 476

16.5 Chapter Summary 482

References 483

17 Electromigration 485

17.1 Basic Migration Formulation and Algorithm 485

17.2 Electromigration Examples from IC Device and Package 489

17.2.1 A Sweat Structure 489

17.2.2 A Flip-Chip CSP with Solder Bumps 492

17.3 Chapter Summary 508

References 509

18 Popcorning in Plastic Packages 511

18.1 Statement of Problem 511

18.2 Analysis 513

18.3 Results and Comparisons 515

18.3.1 Behavior of a Delaminated Package due to Pulsed Heating-Verification 515

18.3.2 Convergence of the Total Strain Energy Release Rate 516

18.3.3 Effect of Delamination Size and Various Processes for a Thick Package 517

18.3.4 Effect of Moisture Expansion Coefficient 526

18.4 Chapter Summary 527

References 528

19 Modeling and Simulation of Power Electronic Modules 531

19.1 Structure Analysis of Power Electronics with Microchannel Coolers 531

19.2 Thermal Simulation of IGBT Module on Copper Microchannel Baseplate 533

19.3 Residual Stress Analysis of IGBT Module on Copper Microchannel Baseplate 538

19.4 Optimization for Warpage and Residual Stress Due to Reflow Process in IGBT Modules 547

19.4.1 Effects of Copper Layer Patterns of DBC on Warpage and Stress 548

19.4.2 Effects of the Arrangement of DBC Plates on Warpage and Residual Stress in IGBT Modules 549

19.4.3 Effects of the Thickness of Packaging Components on Warpage and Residual Stress in IGBT Modules 550

19.4.4 Effects of Pre-warped Copper Substrate on Warpage and Stress in IGBT Modules 551

19.4.5 Experiment 552

19.5 An Optimal Structural Design to Improve the Reliability of Al2O3-DBC Substrates under Thermal Cycling 554

19.5.1 Failure Mechanisms of DBC Substrate 556

19.5.2 Optimal Structure Design of DBC Substrate 558

19.5.3 Results and Discussion 562

19.6 Chapter Summary 565

References 565

20 Analytical Models for Thermal Resistances in Electronics Packaging 569

20.1 Resistances Eccentric Heat Source on Rectangular Plate with Convective Cooling at Upper and Lower Surfaces 569

20.1.1 Network Model 571

20.1.2 Comparisons and Discussion 575

20.2 Thermal Resistance Model for Calculating Mean Die Temperature of A Typical BGA Packaging 577

20.2.1 Model Development 578

20.2.2 Analysis and Calculation 587

20.2.3 Results and Discussions 589

20.3 Chapter Summary 590

References 590

21 3D Through Silicon Via (TSV) Packaging 593

21.1 A New Prewetting Process of TSV Electroplating for 3D Integration 593

21.1.1 Modeling and Simulation 593

21.1.2 Experiments 596

21.1.3 Results and Discussions 598

21.2 Study of Annular Copper-Filled TSVs of Sensor and Interposer Chips for

3D Integration 599

21.2.1 Experiments 600

21.2.2 Results and Discussion 602

21.3 Chapter Summary 608

References 608

Part IV Modern Modeling and Simulation Methodologies: Application to Nano Packaging 611

22 Classical Molecular Dynamics 613

22.1 General Description of Molecular Dynamics Method 613

22.2 Mechanism of Carbon Nanotube Welding onto the Metal 614

22.2.1 Computational Methodology 614

22.2.2 Results and Discussion 615

22.3 Applications of Car-Parrinello Molecular Dynamics 622

22.3.1 Car-Parrinello Simulation of Initial Growth Stage of Gallium Nitride

on Carbon Nanotube 622

22.3.2 Effects of Mechanical Deformation on Outer Surface Reactivity of Carbon Nanotubes 626

22.3.3 Adsorption Configuration of Magnesium on Wurtzite Gallium Nitride Surface Using First-Principles Calculations 631

22.4 Nano-Welding by RF Heating 636

22.5 Chapter Summary 640

References 640

23 Aluminum Nitride Deposition 645

23.1 Study Effects of Temperature and N: Al Flux Ratio on Deposited AlN 645

23.1.1 Model and Methods 645

23.1.2 Results and Discussion 647

23.2 AlN Deposition on GaN Substrate 653

Contents xiii

23.2.1 Analysis Methods 654

23.2.2 Results and Discussion 655

23.3 Atomic Simulation of AlGaN Film Deposition on AlN Template 662

23.3.1 Analysis Methods 662

23.3.2 Results and Discussion 662

23.4 Chapter Summary 667

References 667

24 Mechanical Properties of AlN and Graphene 671

24.1 Mechanical Properties of AlN with Raman Verification 671

24.1.1 Methodology 672

24.1.2 Results and Analysis 672

24.2 Stress Evolution in AlN and GaN Grown on Si(111): Experiments and Theoretical Modeling 676

24.2.1 Sample Preparation and Material Characteristics 677

24.2.2 Stress Characterization 679

24.2.3 Simulations 681

24.3 Molecular Distinctive Nanofriction of Graphene Coated Copper Foil 685

24.3.1 Modeling and Method 686

24.3.2 Results and Discussion 687

24.4 Chapter Summary 691

References 692

Appendix Conversion Tables and Constants 696


作者介绍:

刘胜,武汉大学工业科学研究院,长江学者、科技部863计划、十一五重大项目“半导体照明工程”总体专家组成员,院长、教授,长江学者,博士生导师。1992年毕业于Stanford大学、获得博士学位。1998年在美国韦恩州立大学任终身副教授。2006年回国任华中科技大学教授,同时受聘于武汉光电国家实验室。目前是中国科技部“863计划”“十一五”半导体照明重大专项的11个专家之一, “863计划”“十五”微机电系统(MEMS)重大专项总体专家组成员5个专家之一。1995年获得美国白宫总统教授奖,1996年获得ASME青年工程师奖,1999年被评为中国海外杰出青年科学家。


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

暂无相关书籍摘录,正在全力查找中!



原文赏析:

暂无原文赏析,正在全力查找中!


其它内容:

编辑推荐

发展电子封装产业是摆脱西方对我国集成电路垄断的重要突破口。我国电子封装产业核心技术缺乏,工艺与装备被发达国家垄断,产业发展面临工艺、装备知识产权“空心化”局面,“卡脖子”风险凸显,严重制约我国电子制造业发展,威胁国家信息安全。国家连续四个五年计划列为重点突破课题。 为满足业内需求,作者结合自己三十年的封装经验和模拟仿真的积累,参考国际上前沿研究成果,撰写了一本针对微电子封装的工艺制造、可靠性、测试的建模仿真的图书。本书中90%内容为作者长期的研究成果。

1. 本书是全面讲述先进微电子封装集成制造、可靠性、测试的建模和仿真的图书。修订版中增加了如下微电子封装业内热点问题,为解决国际电子封装面临共性难题提供理论基础:

(1)跌落可靠性仿真中埋入式测试芯片验证内容。 

(2)基于硅通孔叠层封装工艺及可靠性分析。 

(3)电力电子封装热管理设计。 

(4)第三代半导体薄膜材料生产分子动力学仿真。 

2. 本书对于微电子封装与集成的关键技术——电、光、湿及热管理技术、高可靠性保证进行了详细的阐述。

3.本书关注微电子封装业内热点及难点,为解决国际电子封装面临共性问题提供思路。 

4.本书所提出的用于微电子器件先进工程设计的并行工程方法与协同设计方法,将会使广大读者受益匪浅。


前言

The technical level and development scale of the integrated circuit (IC) industry is one of the important indicators to measure a country’s industrial competitiveness and comprehensive national strength, and is the source of modern economic development. The application of IC has already become routine in various industries, such as military satellites, radar, civilian automotive electronics, smart equipment, and consumer electronics, etc. At present, the IC industry has formed three major industrial chains of design, manufacturing and packaging testing, which have become the indispensable pillar in the IC industry.

IC packaging is an indispensable process in the IC industry, which is the bridge from chip to device and device to system. It is a key fundamental manufacturing part of the IC industry and a competitive commanding height for the core device manufacturing of the IC industry.

With the rapid development of IC technology, higher and higher requirements for miniaturization, multi-function, high reliability and low cost of electronic products are put forward. Facing this situation, the electronic packaging materials and technologies are undergoing rapid development, promoting lots of advanced packaging materials. Advanced electronic packaging materials and technologies are the core of IC packaging.

In order to promote the development of China’s advanced electronic packaging industry and meet the urgent needs of researchers ranged from teaching and scientific study to engineering developing in the field of electronic packaging, the editorial committee has invited famous specialists to write the Series on Advanced Electronic Packaging Technology and Key Materials in recent years (English version). The series includes: “Advanced Polyimide Materials”, “From LED to Solid State Lighting ”, “Freeform Optics for LED Packages and Applications”, “Modeling, Analysis, Design and Tests for Electronics Packaging beyond Moore”, “TSV(through-silicon via technology) Package”, etc.

This series of books systematically describes the advanced electronic packaging from three aspects: advanced packaging materials, advanced packaging technologies and advanced packaging simulation design methods. This series covers the most advanced packaging materials such as polyimide materials and packaging technologies such as freeform optical technology, TSV (through-silicon via technology) packaging, and advanced packaging simulation design methods such as multi-physics analysis and applications. In addition, this series also makes a planning outlook and forecast for the development trend of advanced electronic packaging.

This series of books is of great worth for workers engaged in scientific research, production and application in electronic packaging and related industries, and also has great reference significance to teachers and students of related majors in higher education institutions.

 We believe that the publication of this series of books will play a positive role in promoting the development of  China’s IC industry and advanced electronic packaging industry.

Finally, we would like to express our sincere gratitude to our colleagues who have worked hard in the preparation of this series. We also express our heartfelt thanks to those who participated in organizing the publication of this series!

C.P.

IEEE Fellow

Member of Academy of Engineering of the USA

Member of Chinese Academy of Engineering

Former Bell Labs Fellow

Dean of Engineering, The Chinese University of Hong Kong

Regents’ Professor, Georgia Institute of Technology, Atlanta, GA 30332, USA

Sheng Liu, Ph.D

IEEE Fellow, ASME Fellow

Chang Jiang Scholar Professor

Dean, School of Power and Mechanical Engineering,

Founding Executive Director, Institute of Technology Sciences

Associate Dean of School of Microelectronics, Wuhan University

Professor of School of Mechanical Science and Engineering

Huazhong University of Science and Technology

Wuhan, Hubei, China

Wenhui Zhu, Ph.D.

National Invited Professor

College of Mechanical and Electrical Engineering,

Central South University

Changsha, Hunan, China


书籍介绍

随着电子封装的发展,电子封装已从传统的四个主要功能(电源系统、信号分布及传递、散热与机械保护)扩展为六个功能,即增加了DFX 及系统测试两个新的功能。其中DFX 是为“X”而设计,X 包括:可制造性、可靠性、可维护性、成本,甚至六西格玛。DFX 有望在产品设计阶段实现工艺窗口的确定、可靠性评估和测试结构及参数的设计等功能,真正做到“第一次就能成功”,从而将计算机辅助工程(CAE)变为计算机主导工程(CE),以大大加速产品的上市速度。本书是全面介绍DFX 在封装中应用的图书。作为封装工艺过程和快速可靠性评估及测试建模仿真的第一本专著,书中包含两位作者在工业界二十多年的丰富经验,以及在MEMS、IC和LED 封装部分成功的实例,希望能给国内同行起到抛砖引玉的作用。同时,读者将会从书中的先进工程设计和微电子产品的并行工程和协同设计方法中受益。 本书第2 版新增了两位作者在电子制造和封装领域新的成果与经验,例如电力电子模块的建模和仿真、电子封装耐热性的分析模型、3D TSV 封装等内容。 本书主要读者对象为学习DFX(制造工艺设计、测试设计、可靠性设计等)的研究人员、工程师和学生等。


书籍真实打分

  • 故事情节:3分

  • 人物塑造:7分

  • 主题深度:8分

  • 文字风格:4分

  • 语言运用:6分

  • 文笔流畅:4分

  • 思想传递:4分

  • 知识深度:8分

  • 知识广度:9分

  • 实用性:9分

  • 章节划分:9分

  • 结构布局:3分

  • 新颖与独特:6分

  • 情感共鸣:6分

  • 引人入胜:6分

  • 现实相关:5分

  • 沉浸感:3分

  • 事实准确性:4分

  • 文化贡献:9分


网站评分

  • 书籍多样性:5分

  • 书籍信息完全性:4分

  • 网站更新速度:9分

  • 使用便利性:5分

  • 书籍清晰度:7分

  • 书籍格式兼容性:8分

  • 是否包含广告:4分

  • 加载速度:5分

  • 安全性:7分

  • 稳定性:4分

  • 搜索功能:5分

  • 下载便捷性:3分


下载点评

  • 快捷(455+)
  • 目录完整(632+)
  • 体验还行(675+)
  • mobi(459+)
  • 简单(231+)
  • 差评(72+)
  • 藏书馆(536+)
  • pdf(408+)

下载评价

  • 网友 辛***玮: ( 2024-12-31 08:37:00 )

    页面不错 整体风格喜欢

  • 网友 宫***玉: ( 2025-01-10 10:38:43 )

    我说完了。

  • 网友 屠***好: ( 2024-12-27 06:25:11 )

    还行吧。

  • 网友 汪***豪: ( 2024-12-28 21:56:33 )

    太棒了,我想要azw3的都有呀!!!

  • 网友 曾***文: ( 2025-01-18 16:59:19 )

    五星好评哦

  • 网友 谢***灵: ( 2024-12-21 02:32:23 )

    推荐,啥格式都有

  • 网友 印***文: ( 2024-12-28 01:13:04 )

    我很喜欢这种风格样式。

  • 网友 潘***丽: ( 2025-01-18 06:52:14 )

    这里能在线转化,直接选择一款就可以了,用他这个转很方便的

  • 网友 曾***玉: ( 2024-12-22 12:50:24 )

    直接选择epub/azw3/mobi就可以了,然后导入微信读书,体验百分百!!!

  • 网友 堵***洁: ( 2025-01-06 07:24:36 )

    好用,支持

  • 网友 戈***玉: ( 2025-01-09 04:43:40 )

    特别棒

  • 网友 隗***杉: ( 2024-12-22 14:39:45 )

    挺好的,还好看!支持!快下载吧!

  • 网友 冷***洁: ( 2024-12-24 18:46:27 )

    不错,用着很方便

  • 网友 濮***彤: ( 2024-12-30 10:44:11 )

    好棒啊!图书很全

  • 网友 师***怀: ( 2024-12-29 03:59:31 )

    好是好,要是能免费下就好了

  • 网友 宫***凡: ( 2024-12-30 02:00:42 )

    一般般,只能说收费的比免费的强不少。


随机推荐